toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Andrea Gemelli; Sanket Biswas; Enrico Civitelli; Josep Llados; Simone Marinai edit   pdf
url  doi
isbn  openurl
  Title Doc2Graph: A Task Agnostic Document Understanding Framework Based on Graph Neural Networks Type Conference Article
  Year 2022 Publication 17th European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume 13804 Issue Pages 329–344  
  Abstract Geometric Deep Learning has recently attracted significant interest in a wide range of machine learning fields, including document analysis. The application of Graph Neural Networks (GNNs) has become crucial in various document-related tasks since they can unravel important structural patterns, fundamental in key information extraction processes. Previous works in the literature propose task-driven models and do not take into account the full power of graphs. We propose Doc2Graph, a task-agnostic document understanding framework based on a GNN model, to solve different tasks given different types of documents. We evaluated our approach on two challenging datasets for key information extraction in form understanding, invoice layout analysis and table detection.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-031-25068-2 Medium  
  Area Expedition Conference ECCV-TiE  
  Notes DAG; 600.162; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ GBC2022 Serial 3795  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: