toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Andres Mafla edit  isbn
openurl 
  Title Leveraging Scene Text Information for Image Interpretation Type Book Whole
  Year 2022 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Until recently, most computer vision models remained illiterate, largely ignoring the semantically rich and explicit information contained in scene text. Recent progress in scene text detection and recognition has recently allowed exploring its role in a diverse set of open computer vision problems, e.g. image classification, image-text retrieval, image captioning, and visual question answering to name a few. The explicit semantics of scene text closely requires specific modeling similar to language. However, scene text is a particular signal that has to be interpreted according to a comprehensive perspective that encapsulates all the visual cues in an image. Incorporating this information is a straightforward task for humans, but if we are unfamiliar with a language or scripture, achieving a complete world understanding is impossible (e.a. visiting a foreign country with a different alphabet). Despite the importance of scene text, modeling it requires considering the several ways in which scene text interacts with an image, processing and fusing an additional modality. In this thesis, we mainly focus
on two tasks, scene text-based fine-grained image classification, and cross-modal retrieval. In both studied tasks we identify existing limitations in current approaches and propose plausible solutions. Concretely, in each chapter: i) We define a compact way to embed scene text that generalizes to unseen words at training time while performing in real-time. ii) We incorporate the previously learned scene text embedding to create an image-level descriptor that overcomes optical character recognition (OCR) errors which is well-suited to the fine-grained image classification task. iii) We design a region-level reasoning network that learns the interaction through semantics among salient visual regions and scene text instances. iv) We employ scene text information in image-text matching and introduce the Scene Text Aware Cross-Modal retrieval StacMR task. We gather a dataset that incorporates scene text and design a model suited for the newly studied modality. v) We identify the drawbacks of current retrieval metrics in cross-modal retrieval. An image captioning metric is proposed as a way of better evaluating semantics in retrieved results. Ample experimentation shows that incorporating such semantics into a model yields better semantic results while
requiring significantly less data to converge.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez  
  Language Summary Language (down) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-6-2 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ Maf2022 Serial 3756  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: