toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author Pau Torras; Arnau Baro; Alicia Fornes; Lei Kang edit   pdf
  Title Improving Handwritten Music Recognition through Language Model Integration Type Conference Article
  Year 2022 Publication 4th International Workshop on Reading Music Systems (WoRMS2022) Abbreviated Journal  
  Volume Issue Pages 42-46  
  Keywords optical music recognition; historical sources; diversity; music theory; digital humanities  
  Abstract Handwritten Music Recognition, especially in the historical domain, is an inherently challenging endeavour; paper degradation artefacts and the ambiguous nature of handwriting make recognising such scores an error-prone process, even for the current state-of-the-art Sequence to Sequence models. In this work we propose a way of reducing the production of statistically implausible output sequences by fusing a Language Model into a recognition Sequence to Sequence model. The idea is leveraging visually-conditioned and context-conditioned output distributions in order to automatically find and correct any mistakes that would otherwise break context significantly. We have found this approach to improve recognition results to 25.15 SER (%) from a previous best of 31.79 SER (%) in the literature.  
  Address November 18, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WoRMS  
  Notes DAG; 600.121; 600.162; 602.230 Approved no  
  Call Number Admin @ si @ TBF2022 Serial 3735  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: