Home | << 1 >> |
Record | |||||
---|---|---|---|---|---|
Author | Giacomo Magnifico; Beata Megyesi; Mohamed Ali Souibgui; Jialuo Chen; Alicia Fornes | ||||
Title | Lost in Transcription of Graphic Signs in Ciphers | Type | Conference Article | ||
Year | 2022 | Publication | International Conference on Historical Cryptology (HistoCrypt 2022) | Abbreviated Journal | |
Volume | Issue | Pages | 153-158 | ||
Keywords | transcription of ciphers; hand-written text recognition of symbols; graphic signs | ||||
Abstract | Hand-written Text Recognition techniques with the aim to automatically identify and transcribe hand-written text have been applied to historical sources including ciphers. In this paper, we compare the performance of two machine learning architectures, an unsupervised method based on clustering and a deep learning method with few-shot learning. Both models are tested on seen and unseen data from historical ciphers with different symbol sets consisting of various types of graphic signs. We compare the models and highlight their differences in performance, with their advantages and shortcomings. | ||||
Address | Amsterdam, Netherlands, June 20-22, 2022 | ||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | HystoCrypt | ||
Notes | DAG; 600.121; 600.162; 602.230; 600.140 | Approved | no | ||
Call Number | Admin @ si @ MBS2022 | Serial | 3731 | ||
Permanent link to this record |