toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Julio C. S. Jacques Junior; Yagmur Gucluturk; Marc Perez; Umut Guçlu; Carlos Andujar; Xavier Baro; Hugo Jair Escalante; Isabelle Guyon; Marcel A. J. van Gerven; Rob van Lier; Sergio Escalera edit  doi
openurl 
  Title First Impressions: A Survey on Vision-Based Apparent Personality Trait Analysis Type Journal Article
  Year 2022 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 13 Issue 1 Pages 75-95  
  Keywords Personality computing; first impressions; person perception; big-five; subjective bias; computer vision; machine learning; nonverbal signals; facial expression; gesture; speech analysis; multi-modal recognition  
  Abstract Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.  
  Address 1 Jan.-March 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA Approved no  
  Call Number Admin @ si @ Serial 3724  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: