|   | 
Author Aura Hernandez-Sabate; Jose Elias Yauri; Pau Folch; Miquel Angel Piera; Debora Gil
Title Recognition of the Mental Workloads of Pilots in the Cockpit Using EEG Signals Type Journal Article
Year (up) 2022 Publication Applied Sciences Abbreviated Journal APPLSCI
Volume 12 Issue 5 Pages 2298
Keywords Cognitive states; Mental workload; EEG analysis; Neural networks; Multimodal data fusion
Abstract The commercial flightdeck is a naturally multi-tasking work environment, one in which interruptions are frequent come in various forms, contributing in many cases to aviation incident reports. Automatic characterization of pilots’ workloads is essential to preventing these kind of incidents. In addition, minimizing the physiological sensor network as much as possible remains both a challenge and a requirement. Electroencephalogram (EEG) signals have shown high correlations with specific cognitive and mental states, such as workload. However, there is not enough evidence in the literature to validate how well models generalize in cases of new subjects performing tasks with workloads similar to the ones included during the model’s training. In this paper, we propose a convolutional neural network to classify EEG features across different mental workloads in a continuous performance task test that partly measures working memory and working memory capacity. Our model is valid at the general population level and it is able to transfer task learning to pilot mental workload recognition in a simulated operational environment.
Address February 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
Area Expedition Conference
Notes IAM; ADAS; 600.139; 600.145; 600.118 Approved no
Call Number Admin @ si @ HYF2022 Serial 3720
Permanent link to this record