Home | << 1 >> |
Record | |||||
---|---|---|---|---|---|
Author | Meysam Madadi; Hugo Bertiche; Sergio Escalera | ||||
Title | Deep unsupervised 3D human body reconstruction from a sparse set of landmarks | Type | Journal Article | ||
Year | 2021 | Publication | International Journal of Computer Vision | Abbreviated Journal | IJCV |
Volume | 129 | Issue | Pages | 2499–2512 | |
Keywords | |||||
Abstract | In this paper we propose the first deep unsupervised approach in human body reconstruction to estimate body surface from a sparse set of landmarks, so called DeepMurf. We apply a denoising autoencoder to estimate missing landmarks. Then we apply an attention model to estimate body joints from landmarks. Finally, a cascading network is applied to regress parameters of a statistical generative model that reconstructs body. Our set of proposed loss functions allows us to train the network in an unsupervised way. Results on four public datasets show that our approach accurately reconstructs the human body from real world mocap data. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | ISBN | Medium | |||
Area | Expedition | Conference | |||
Notes | HUPBA; no proj | Approved | no | ||
Call Number | Admin @ si @ MBE2021 | Serial | 3654 | ||
Permanent link to this record |