|   | 
Author Clementine Decamps; Alexis Arnaud; Florent Petitprez; Mira Ayadi; Aurelia Baures; Lucile Armenoult; Sergio Escalera; Isabelle Guyon; Remy Nicolle; Richard Tomasini; Aurelien de Reynies; Jerome Cros; Yuna Blum; Magali Richard
Title DECONbench: a benchmarking platform dedicated to deconvolution methods for tumor heterogeneity quantification Type Journal Article
Year 2021 Publication BMC Bioinformatics Abbreviated Journal
Volume 22 Issue Pages 473
Abstract Quantification of tumor heterogeneity is essential to better understand cancer progression and to adapt therapeutic treatments to patient specificities. Bioinformatic tools to assess the different cell populations from single-omic datasets as bulk transcriptome or methylome samples have been recently developed, including reference-based and reference-free methods. Improved methods using multi-omic datasets are yet to be developed in the future and the community would need systematic tools to perform a comparative evaluation of these algorithms on controlled data.
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ DAP2021 Serial 3650
Permanent link to this record