toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Minesh Mathew; Viraj Bagal; Ruben Tito; Dimosthenis Karatzas; Ernest Valveny; C.V. Jawahar edit   pdf
openurl 
  Title InfographicVQA Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1697-1706  
  Keywords  
  Abstract Infographics communicate information using a combination of textual, graphical and visual elements. This work explores the automatic understanding of infographic images by using a Visual Question Answering technique. To this end, we present InfographicVQA, a new dataset comprising a diverse collection of infographics and question-answer annotations. The questions require methods that jointly reason over the document layout, textual content, graphical elements, and data visualizations. We curate the dataset with an emphasis on questions that require elementary reasoning and basic arithmetic skills. For VQA on the dataset, we evaluate two Transformer-based strong baselines. Both the baselines yield unsatisfactory results compared to near perfect human performance on the dataset. The results suggest that VQA on infographics--images that are designed to communicate information quickly and clearly to human brain--is ideal for benchmarking machine understanding of complex document images. The dataset is available for download at docvqa. org  
  Address Virtual; Waikoloa; Hawai; USA; January 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.155 Approved no  
  Call Number MBT2022 Serial 3625  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: