|   | 
Author S.K. Jemni; Mohamed Ali Souibgui; Yousri Kessentini; Alicia Fornes
Title Enhance to Read Better: A Multi-Task Adversarial Network for Handwritten Document Image Enhancement Type Journal Article
Year 2022 Publication Pattern Recognition Abbreviated Journal PR
Volume (down) 123 Issue Pages 108370
Abstract Handwritten document images can be highly affected by degradation for different reasons: Paper ageing, daily-life scenarios (wrinkles, dust, etc.), bad scanning process and so on. These artifacts raise many readability issues for current Handwritten Text Recognition (HTR) algorithms and severely devalue their efficiency. In this paper, we propose an end to end architecture based on Generative Adversarial Networks (GANs) to recover the degraded documents into a and form. Unlike the most well-known document binarization methods, which try to improve the visual quality of the degraded document, the proposed architecture integrates a handwritten text recognizer that promotes the generated document image to be more readable. To the best of our knowledge, this is the first work to use the text information while binarizing handwritten documents. Extensive experiments conducted on degraded Arabic and Latin handwritten documents demonstrate the usefulness of integrating the recognizer within the GAN architecture, which improves both the visual quality and the readability of the degraded document images. Moreover, we outperform the state of the art in H-DIBCO challenges, after fine tuning our pre-trained model with synthetically degraded Latin handwritten images, on this task.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
Area Expedition Conference
Notes DAG; 600.124; 600.121; 602.230 Approved no
Call Number Admin @ si @ JSK2022 Serial 3613
Permanent link to this record