toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Mohamed Ali Souibgui; Alicia Fornes; Y.Kessentini; C.Tudor edit   pdf
doi  openurl
  Title A Few-shot Learning Approach for Historical Encoded Manuscript Recognition Type Conference Article
  Year 2021 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 5413-5420  
  Abstract Encoded (or ciphered) manuscripts are a special type of historical documents that contain encrypted text. The automatic recognition of this kind of documents is challenging because: 1) the cipher alphabet changes from one document to another, 2) there is a lack of annotated corpus for training and 3) touching symbols make the symbol segmentation difficult and complex. To overcome these difficulties, we propose a novel method for handwritten ciphers recognition based on few-shot object detection. Our method first detects all symbols of a given alphabet in a line image, and then a decoding step maps the symbol similarity scores to the final sequence of transcribed symbols. By training on synthetic data, we show that the proposed architecture is able to recognize handwritten ciphers with unseen alphabets. In addition, if few labeled pages with the same alphabet are used for fine tuning, our method surpasses existing unsupervised and supervised HTR methods for ciphers recognition.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.140 Approved no  
  Call Number Admin @ si @ SFK2021 Serial 3449  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: