|   | 
Details
   web
Record
Author (up) Meysam Madadi; Hugo Bertiche; Sergio Escalera
Title SMPLR: Deep learning based SMPL reverse for 3D human pose and shape recovery Type Journal Article
Year 2020 Publication Pattern Recognition Abbreviated Journal PR
Volume 106 Issue Pages 107472
Keywords Deep learning; 3D Human pose; Body shape; SMPL; Denoising autoencoder; Volumetric stack hourglass
Abstract In this paper we propose to embed SMPL within a deep-based model to accurately estimate 3D pose and shape from a still RGB image. We use CNN-based 3D joint predictions as an intermediate representation to regress SMPL pose and shape parameters. Later, 3D joints are reconstructed again in the SMPL output. This module can be seen as an autoencoder where the encoder is a deep neural network and the decoder is SMPL model. We refer to this as SMPL reverse (SMPLR). By implementing SMPLR as an encoder-decoder we avoid the need of complex constraints on pose and shape. Furthermore, given that in-the-wild datasets usually lack accurate 3D annotations, it is desirable to lift 2D joints to 3D without pairing 3D annotations with RGB images. Therefore, we also propose a denoising autoencoder (DAE) module between CNN and SMPLR, able to lift 2D joints to 3D and partially recover from structured error. We evaluate our method on SURREAL and Human3.6M datasets, showing improvement over SMPL-based state-of-the-art alternatives by about 4 and 12 mm, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; no proj Approved no
Call Number Admin @ si @ MBE2020 Serial 3439
Permanent link to this record