|   | 
Details
   web
Record
Author (up) Raul Gomez; Jaume Gibert; Lluis Gomez; Dimosthenis Karatzas
Title Location Sensitive Image Retrieval and Tagging Type Conference Article
Year 2020 Publication 16th European Conference on Computer Vision Abbreviated Journal
Volume Issue Pages
Keywords
Abstract People from different parts of the globe describe objects and concepts in distinct manners. Visual appearance can thus vary across different geographic locations, which makes location a relevant contextual information when analysing visual data. In this work, we address the task of image retrieval related to a given tag conditioned on a certain location on Earth. We present LocSens, a model that learns to rank triplets of images, tags and coordinates by plausibility, and two training strategies to balance the location influence in the final ranking. LocSens learns to fuse textual and location information of multimodal queries to retrieve related images at different levels of location granularity, and successfully utilizes location information to improve image tagging.
Address Virtual; August 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECCV
Notes DAG; 600.121; 600.129 Approved no
Call Number Admin @ si @ GGG2020b Serial 3420
Permanent link to this record