|   | 
Author Andre Litvin; Kamal Nasrollahi; Sergio Escalera; Cagri Ozcinar; Thomas B. Moeslund; Gholamreza Anbarjafari
Title (down) A Novel Deep Network Architecture for Reconstructing RGB Facial Images from Thermal for Face Recognition Type Journal Article
Year 2019 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 78 Issue 18 Pages 25259–25271
Keywords Fully convolutional networks; FusionNet; Thermal imaging; Face recognition
Abstract This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
Area Expedition Conference
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ LNE2019 Serial 3318
Permanent link to this record