|
Abstract |
Se analizan los sistemas de procesamiento automático que trabajan sobre documentos digitalizados con el objetivo de describir los contenidos. De esta forma contribuyen a facilitar el acceso, permitir la indización automática y hacer accesibles los documentos a los motores de búsqueda. El objetivo de estas tecnologías es poder entrenar modelos computacionales que sean capaces de clasificar, agrupar o realizar búsquedas sobre documentos digitales. Así, se describen las tareas de clasificación, agrupamiento y búsqueda. Cuando utilizamos tecnologías de inteligencia artificial en los sistemas de
clasificación esperamos que la herramienta nos devuelva etiquetas semánticas; en sistemas de agrupamiento que nos devuelva documentos agrupados en clusters significativos; y en sistemas de búsqueda esperamos que dada una consulta, nos devuelva una lista ordenada de documentos en función de la relevancia. A continuación se da una visión de conjunto de los métodos que nos permiten describir los documentos digitales, tanto de manera visual (cuál es su apariencia), como a partir de sus contenidos semánticos (de qué hablan). En cuanto a la descripción visual de documentos se aborda el estado de la cuestión de las representaciones numéricas de documentos digitalizados
tanto por métodos clásicos como por métodos basados en el aprendizaje profundo (deep learning). Respecto de la descripción semántica de los contenidos se analizan técnicas como el reconocimiento óptico de caracteres (OCR); el cálculo de estadísticas básicas sobre la aparición de las diferentes palabras en un texto (bag-of-words model); y los métodos basados en aprendizaje profundo como el método word2vec, basado en una red neuronal que, dadas unas cuantas palabras de un texto, debe predecir cuál será la
siguiente palabra. Desde el campo de las ingenierías se están transfiriendo conocimientos que se han integrado en productos o servicios en los ámbitos de la archivística, la biblioteconomía, la documentación y las plataformas de gran consumo, sin embargo los algoritmos deben ser lo suficientemente eficientes no sólo para el reconocimiento y transcripción literal sino también para la capacidad de interpretación de los contenidos. |
|