toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Self-Supervised Learning from Web Data for Multimodal Retrieval Type Book Chapter
  Year 2019 Publication Multi-Modal Scene Understanding Book Abbreviated Journal  
  Volume Issue Pages 279-306  
  Keywords self-supervised learning; webly supervised learning; text embeddings; multimodal retrieval; multimodal embedding  
  Abstract Self-Supervised learning from multimodal image and text data allows deep neural networks to learn powerful features with no need of human annotated data. Web and Social Media platforms provide a virtually unlimited amount of this multimodal data. In this work we propose to exploit this free available data to learn a multimodal image and text embedding, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the proposed pipeline can learn from images with associated text without supervision and analyze the semantic structure of the learnt joint image and text embeddingspace. Weperformathoroughanalysisandperformancecomparisonoffivedifferentstateof the art text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text basedimageretrievaltask,andweclearlyoutperformstateoftheartintheMIRFlickrdatasetwhen training in the target data. Further, we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.129; 601.338; 601.310 Approved no  
  Call Number Admin @ si @ GGG2019 Serial 3266  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: