|   | 
Details
   web
Record
Author Raul Gomez; Lluis Gomez; Jaume Gibert; Dimosthenis Karatzas
Title Self-Supervised Learning from Web Data for Multimodal Retrieval Type Book Chapter
Year 2019 Publication Multi-Modal Scene Understanding Book Abbreviated Journal (up)
Volume Issue Pages 279-306
Keywords self-supervised learning; webly supervised learning; text embeddings; multimodal retrieval; multimodal embedding
Abstract Self-Supervised learning from multimodal image and text data allows deep neural networks to learn powerful features with no need of human annotated data. Web and Social Media platforms provide a virtually unlimited amount of this multimodal data. In this work we propose to exploit this free available data to learn a multimodal image and text embedding, aiming to leverage the semantic knowledge learnt in the text domain and transfer it to a visual model for semantic image retrieval. We demonstrate that the proposed pipeline can learn from images with associated text without supervision and analyze the semantic structure of the learnt joint image and text embeddingspace. Weperformathoroughanalysisandperformancecomparisonoffivedifferentstateof the art text embeddings in three different benchmarks. We show that the embeddings learnt with Web and Social Media data have competitive performances over supervised methods in the text basedimageretrievaltask,andweclearlyoutperformstateoftheartintheMIRFlickrdatasetwhen training in the target data. Further, we demonstrate how semantic multimodal image retrieval can be performed using the learnt embeddings, going beyond classical instance-level retrieval problems. Finally, we present a new dataset, InstaCities1M, composed by Instagram images and their associated texts that can be used for fair comparison of image-text embeddings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.129; 601.338; 601.310 Approved no
Call Number Admin @ si @ GGG2019 Serial 3266
Permanent link to this record