toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Thanh Ha Do; Oriol Ramos Terrades; Salvatore Tabbone edit  url
  Title DSD: document sparse-based denoising algorithm Type Journal Article
  Year 2019 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 22 Issue 1 Pages 177–186  
  Keywords Document denoising; Sparse representations; Sparse dictionary learning; Document degradation models  
  Abstract In this paper, we present a sparse-based denoising algorithm for scanned documents. This method can be applied to any kind of scanned documents with satisfactory results. Unlike other approaches, the proposed approach encodes noise documents through sparse representation and visual dictionary learning techniques without any prior noise model. Moreover, we propose a precision parameter estimator. Experiments on several datasets demonstrate the robustness of the proposed approach compared to the state-of-the-art methods on document denoising.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ DRT2019 Serial 3254  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: