toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Debora Gil; Ruth Aris; Agnes Borras; Esmitt Ramirez; Rafael Sebastian; Mariano Vazquez edit   pdf
doi  openurl
  Title Influence of fiber connectivity in simulations of cardiac biomechanics Type Journal Article
  Year 2019 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR  
  Volume 14 Issue 1 Pages 63–72  
  Keywords Cardiac electromechanical simulations; Diffusion tensor imaging; Fiber connectivity  
  Abstract PURPOSE:
Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.

We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).

The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.

Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.096; 601.323; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GAB2019a Serial 3133  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: