toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Pichao Wang; Wanqing Li; Philip Ogunbona; Jun Wan; Sergio Escalera edit   pdf
url  openurl
  Title RGB-D-based Human Motion Recognition with Deep Learning: A Survey Type Journal Article
  Year 2018 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 171 Issue Pages 118-139  
  Keywords Human motion recognition; RGB-D data; Deep learning; Survey  
  Abstract (up) Human motion recognition is one of the most important branches of human-centered research activities. In recent years, motion recognition based on RGB-D data has attracted much attention. Along with the development in artificial intelligence, deep learning techniques have gained remarkable success in computer vision. In particular, convolutional neural networks (CNN) have achieved great success for image-based tasks, and recurrent neural networks (RNN) are renowned for sequence-based problems. Specifically, deep learning methods based on the CNN and RNN architectures have been adopted for motion recognition using RGB-D data. In this paper, a detailed overview of recent advances in RGB-D-based motion recognition is presented. The reviewed methods are broadly categorized into four groups, depending on the modality adopted for recognition: RGB-based, depth-based, skeleton-based and RGB+D-based. As a survey focused on the application of deep learning to RGB-D-based motion recognition, we explicitly discuss the advantages and limitations of existing techniques. Particularly, we highlighted the methods of encoding spatial-temporal-structural information inherent in video sequence, and discuss potential directions for future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ WLO2018 Serial 3123  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: