toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Suman Ghosh; Ernest Valveny edit   pdf
doi  openurl
  Title Visual attention models for scene text recognition Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract arXiv:1706.01487
In this paper we propose an approach to lexicon-free recognition of text in scene images. Our approach relies on a LSTM-based soft visual attention model learned from convolutional features. A set of feature vectors are derived from an intermediate convolutional layer corresponding to different areas of the image. This permits encoding of spatial information into the image representation. In this way, the framework is able to learn how to selectively focus on different parts of the image. At every time step the recognizer emits one character using a weighted combination of the convolutional feature vectors according to the learned attention model. Training can be done end-to-end using only word level annotations. In addition, we show that modifying the beam search algorithm by integrating an explicit language model leads to significantly better recognition results. We validate the performance of our approach on standard SVT and ICDAR'03 scene text datasets, showing state-of-the-art performance in unconstrained text recognition.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved (up) no  
  Call Number Admin @ si @ GhV2017b Serial 3080  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: