|   | 
Details
   web
Record
Author (up) E. Royer; J. Chazalon; Marçal Rusiñol; F. Bouchara
Title Benchmarking Keypoint Filtering Approaches for Document Image Matching Type Conference Article
Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Best Poster Award.
Reducing the amount of keypoints used to index an image is particularly interesting to control processing time and memory usage in real-time document image matching applications, like augmented documents or smartphone applications. This paper benchmarks two keypoint selection methods on a task consisting of reducing keypoint sets extracted from document images, while preserving detection and segmentation accuracy. We first study the different forms of keypoint filtering, and we introduce the use of the CORE selection method on
keypoints extracted from document images. Then, we extend a previously published benchmark by including evaluations of the new method, by adding the SURF-BRISK detection/description scheme, and by reporting processing speeds. Evaluations are conducted on the publicly available dataset of ICDAR2015 SmartDOC challenge 1. Finally, we prove that reducing the original keypoint set is always feasible and can be beneficial
not only to processing speed but also to accuracy.
Address Kyoto; Japan; November 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICDAR
Notes DAG; 600.084; 600.121 Approved no
Call Number Admin @ si @ RCR2017 Serial 3000
Permanent link to this record