|   | 
Author F. Javier Sanchez; Jorge Bernal; Cristina Sanchez-Montes; Cristina Rodriguez de Miguel; Gloria Fernandez-Esparrach
Title Bright spot regions segmentation and classification for specular highlights detection in colonoscopy videos Type Journal Article
Year 2017 Publication Journal of Machine Vision and Applications Abbreviated Journal MVAP
Volume Issue Pages 1-20
Keywords Specular highlights; bright spot regions segmentation; region classification; colonoscopy
Abstract A novel specular highlights detection method in colonoscopy videos is presented. The method is based on a model of appearance dening specular
highlights as bright spots which are highly contrasted with respect to adjacent regions. Our approach proposes two stages; segmentation, and then classication
of bright spot regions. The former denes a set of candidate regions obtained through a region growing process with local maxima as initial region seeds. This process creates a tree structure which keeps track, at each growing iteration, of the region frontier contrast; nal regions provided depend on restrictions over contrast value. Non-specular regions are ltered through a classication stage performed by a linear SVM classier using model-based features from each region. We introduce a new validation database with more than 25; 000 regions along with their corresponding pixel-wise annotations. We perform a comparative study against other approaches. Results show that our method is superior to other approaches, with our segmented regions being
closer to actual specular regions in the image. Finally, we also present how our methodology can also be used to obtain an accurate prediction of polyp histology.
Corporate Author (up) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
Area Expedition Conference
Notes MV; 600.096; 600.175 Approved no
Call Number Admin @ si @ SBS2017 Serial 2975
Permanent link to this record