toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title A fine-grained approach to scene text script identification Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 192-197  
  Keywords  
  Abstract This paper focuses on the problem of script identification in unconstrained scenarios. Script identification is an important prerequisite to recognition, and an indispensable condition for automatic text understanding systems designed for multi-language environments. Although widely studied for document images and handwritten documents, it remains an almost unexplored territory for scene text images. We detail a novel method for script identification in natural images that combines convolutional features and the Naive-Bayes Nearest Neighbor classifier. The proposed framework efficiently exploits the discriminative power of small stroke-parts, in a fine-grained classification framework. In addition, we propose a new public benchmark dataset for the evaluation of joint text detection and script identification in natural scenes. Experiments done in this new dataset demonstrate that the proposed method yields state of the art results, while it generalizes well to different datasets and variable number of scripts. The evidence provided shows that multi-lingual scene text recognition in the wild is a viable proposition. Source code of the proposed method is made available online.  
  Address Santorini; Grecia; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 601.197; 600.084 Approved no  
  Call Number Admin @ si @ GoK2016b Serial 2863  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: