|   | 
Author Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira
Title Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives Type Journal Article
Year 2016 Publication Robotics and Autonomous Systems Abbreviated Journal RAS
Volume 83 Issue Pages 312-325
Keywords Incremental scene reconstruction; Point clouds; Autonomous vehicles; Polygonal primitives
Abstract When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.
Corporate Author Thesis
Publisher Elsevier B.V. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
Area Expedition Conference
Notes ADAS; 600.086, 600.076 Approved no
Call Number Admin @ si @OSS2016a Serial (up) 2806
Permanent link to this record