|   | 
Author Katerine Diaz; Aura Hernandez-Sabate; Antonio Lopez
Title A reduced feature set for driver head pose estimation Type Journal Article
Year 2016 Publication Applied Soft Computing Abbreviated Journal ASOC
Volume 45 Issue Pages 98-107
Keywords (up) Head pose estimation; driving performance evaluation; subspace based methods; linear regression
Abstract Evaluation of driving performance is of utmost importance in order to reduce road accident rate. Since driving ability includes visual-spatial and operational attention, among others, head pose estimation of the driver is a crucial indicator of driving performance. This paper proposes a new automatic method for coarse and fine head's yaw angle estimation of the driver. We rely on a set of geometric features computed from just three representative facial keypoints, namely the center of the eyes and the nose tip. With these geometric features, our method combines two manifold embedding methods and a linear regression one. In addition, the method has a confidence mechanism to decide if the classification of a sample is not reliable. The approach has been tested using the CMU-PIE dataset and our own driver dataset. Despite the very few facial keypoints required, the results are comparable to the state-of-the-art techniques. The low computational cost of the method and its robustness makes feasible to integrate it in massive consume devices as a real time application.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
Area Expedition Conference
Notes ADAS; 600.085; 600.076; Approved no
Call Number Admin @ si @ DHL2016 Serial 2760
Permanent link to this record