toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Alejandro Gonzalez Alzate; Zhijie Fang; Yainuvis Socarras; Joan Serrat; David Vazquez; Jiaolong Xu; Antonio Lopez edit   pdf
doi  openurl
  Title Pedestrian Detection at Day/Night Time with Visible and FIR Cameras: A Comparison Type Journal Article
  Year 2016 Publication Sensors Abbreviated Journal SENS  
  Volume 16 Issue 6 Pages 820  
  Keywords Pedestrian Detection; FIR  
  Abstract Despite all the significant advances in pedestrian detection brought by computer vision for driving assistance, it is still a challenging problem. One reason is the extremely varying lighting conditions under which such a detector should operate, namely day and night time. Recent research has shown that the combination of visible and non-visible imaging modalities may increase detection accuracy, where the infrared spectrum plays a critical role. The goal of this paper is to assess the accuracy gain of different pedestrian models (holistic, part-based, patch-based) when training with images in the far infrared spectrum. Specifically, we want to compare detection accuracy on test images recorded at day and nighttime if trained (and tested) using (a) plain color images, (b) just infrared images and (c) both of them. In order to obtain results for the last item we propose an early fusion approach to combine features from both modalities. We base the evaluation on a new dataset we have built for this purpose as well as on the publicly available KAIST multispectral dataset.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.076; 600.082; 601.281 Approved no  
  Call Number ADAS @ adas @ GFS2016 Serial 2754  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: