|   | 
Details
   web
Record
Author M. Oliver; G. Haro; Mariella Dimiccoli; B. Mazin; C. Ballester
Title A Computational Model for Amodal Completion Type Journal Article
Year 2016 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV
Volume 56 Issue 3 Pages 511–534
Keywords Perception; visual completion; disocclusion; Bayesian model;relatability; Euler elastica
Abstract This paper presents a computational model to recover the most likely interpretation
of the 3D scene structure from a planar image, where some objects may occlude others. The estimated scene interpretation is obtained by integrating some global and local cues and provides both the complete disoccluded objects that form the scene and their ordering according to depth.
Our method first computes several distal scenes which are compatible with the proximal planar image. To compute these different hypothesized scenes, we propose a perceptually inspired object disocclusion method, which works by minimizing the Euler's elastica as well as by incorporating the relatability of partially occluded contours and the convexity of the disoccluded objects. Then, to estimate the preferred scene we rely on a Bayesian model and define probabilities taking into account the global complexity of the objects in the hypothesized scenes as well as the effort of bringing these objects in their relative position in the planar image, which is also measured by an Euler's elastica-based quantity. The model is illustrated with numerical experiments on, both, synthetic and real images showing the ability of our model to reconstruct the occluded objects and the preferred perceptual order among them. We also present results on images of the Berkeley dataset with provided figure-ground ground-truth labeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; 601.235 Approved no
Call Number Admin @ si @ OHD2016b Serial 2745
Permanent link to this record