|   | 
Details
   web
Record
Author (up) Jean-Pascal Jacob; Mariella Dimiccoli; Lionel Moisan
Title Active skeleton for bacteria modeling Type Journal Article
Year 2016 Publication Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization Abbreviated Journal CMBBE
Volume 5 Issue 4 Pages 274-286
Keywords Bacteria modelling; medial axis; active contours; active skeleton; shape contraints
Abstract The investigation of spatio-temporal dynamics of bacterial cells and their molecular components requires automated image analysis tools to track cell shape properties and molecular component locations inside the cells. In the study of bacteria aging, the molecular components of interest are protein aggregates accumulated near bacteria boundaries. This particular location makes very ambiguous the correspondence between aggregates and cells, since computing accurately bacteria boundaries in phase-contrast time-lapse imaging is a challenging task. This paper proposes an active skeleton formulation for bacteria modeling which provides several advantages: an easy computation of shape properties (perimeter, length, thickness, orientation), an improved boundary accuracy in noisy images, and a natural bacteria-centered coordinate system that permits the intrinsic location of molecular components inside the cell. Starting from an initial skeleton estimate, the medial axis of the bacterium is obtained by minimizing an energy function which incorporates bacteria shape constraints. Experimental results on biological images and comparative evaluation of the performances validate the proposed approach for modeling cigar-shaped bacteria like Escherichia coli. The Image-J plugin of the proposed method can be found online at this http URL
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB Approved no
Call Number Admin @ si @ JDM2016 Serial 2711
Permanent link to this record