toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) David Roche edit  openurl
  Title A Statistical Framework for Terminating Evolutionary Algorithms at their Steady State Type Book Whole
  Year 2015 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract As any iterative technique, it is a necessary condition a stop criterion for terminating Evolutionary Algorithms (EA). In the case of optimization methods, the algorithm should stop at the time it has reached a steady state so it can not improve results anymore. Assessing the reliability of termination conditions for EAs is of prime importance. A wrong or weak stop criterion can negatively a ect both the computational e ort and the nal result.
In this Thesis, we introduce a statistical framework for assessing whether a termination condition is able to stop EA at its steady state. In one hand a numeric approximation to steady states to detect the point in which EA population has lost its diversity has been presented for EA termination. This approximation has been applied to di erent EA paradigms based on diversity and a selection of functions covering the properties most relevant for EA convergence. Experiments show that our condition works regardless of the search space dimension and function landscape and Di erential Evolution (DE) arises as the best paradigm. On the other hand, we use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in xspace.
Our theoretical framework is analyzed across several benchmark test functions
and two standard termination criteria based on function improvement in f-space and EA population x-space distribution for the DE paradigm. Results validate our statistical framework as a powerful tool for determining the capability of a measure for terminating EA and select the x-space distribution as the best-suited for accurately stopping DE in real-world applications.
 
  Address July 2015  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil; Jesus Giraldo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.075 Approved no  
  Call Number Admin @ si @ Roc2015 Serial 2686  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: