toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Christophe Rigaud; Clement Guerin; Dimosthenis Karatzas; Jean-Christophe Burie; Jean-Marc Ogier edit  doi
  Title Knowledge-driven understanding of images in comic books Type Journal Article
  Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue 3 Pages 199-221  
  Keywords Document Understanding; comics analysis; expert system  
  Abstract Document analysis is an active field of research, which can attain a complete understanding of the semantics of a given document. One example of the document understanding process is enabling a computer to identify the key elements of a comic book story and arrange them according to a predefined domain knowledge. In this study, we propose a knowledge-driven system that can interact with bottom-up and top-down information to progressively understand the content of a document. We model the comic book’s and the image processing domains knowledge for information consistency analysis. In addition, different image processing methods are improved or developed to extract panels, balloons, tails, texts, comic characters and their semantic relations in an unsupervised way.  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.056; 600.077 Approved no  
  Call Number RGK2015 Serial 2595  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: