toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio edit  doi
openurl 
  Title Automatic Tumor Volume Segmentation in Whole-Body PET/CT Scans: A Supervised Learning Approach Source Type Journal Article
  Year 2015 Publication Journal of Medical Imaging and Health Informatics Abbreviated Journal JMIHI  
  Volume 5 Issue 2 Pages 192-201  
  Keywords CONTEXTUAL CLASSIFICATION; PET/CT; SUPERVISED LEARNING; TUMOR SEGMENTATION; WHOLE BODY  
  Abstract Whole-body 3D PET/CT tumoral volume segmentation provides relevant diagnostic and prognostic information in clinical oncology and nuclear medicine. Carrying out this procedure manually by a medical expert is time consuming and suffers from inter- and intra-observer variabilities. In this paper, a completely automatic approach to this task is presented. First, the problem is stated and described both in clinical and technological terms. Then, a novel supervised learning segmentation framework is introduced. The segmentation by learning approach is defined within a Cascade of Adaboost classifiers and a 3D contextual proposal of Multiscale Stacked Sequential Learning. Segmentation accuracy results on 200 Breast Cancer whole body PET/CT volumes show mean 49% sensitivity, 99.993% specificity and 39% Jaccard overlap Index, which represent good performance results both at the clinical and technological level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (down)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SED2015 Serial 2584  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: