|   | 
Author Debora Gil; David Roche; Agnes Borras; Jesus Giraldo
Title Terminating Evolutionary Algorithms at their Steady State Type Journal Article
Year 2015 Publication Computational Optimization and Applications Abbreviated Journal COA
Volume 61 Issue 2 Pages 489-515
Keywords Evolutionary algorithms; Termination condition; Steady state; Differential evolution
Abstract Assessing the reliability of termination conditions for evolutionary algorithms (EAs) is of prime importance. An erroneous or weak stop criterion can negatively affect both the computational effort and the final result. We introduce a statistical framework for assessing whether a termination condition is able to stop an EA at its steady state, so that its results can not be improved anymore. We use a regression model in order to determine the requirements ensuring that a measure derived from EA evolving population is related to the distance to the optimum in decision variable space. Our framework is analyzed across 24 benchmark test functions and two standard termination criteria based on function fitness value in objective function space and EA population decision variable space distribution for the differential evolution (DE) paradigm. Results validate our framework as a powerful tool for determining the capability of a measure for terminating EA and the results also identify the decision variable space distribution as the best-suited for accurately terminating DE in real-world applications.
Corporate Author Thesis
Publisher Springer US Place of Publication Editor
Language Summary Language (up) Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-6003 ISBN Medium
Area Expedition Conference
Notes IAM; 600.044; 605.203; 600.060; 600.075 Approved no
Call Number Admin @ si @ GRB2015 Serial 2560
Permanent link to this record