|   | 
Author (up) Alvaro Cepero; Albert Clapes; Sergio Escalera
Title Automatic non-verbal communication skills analysis: a quantitative evaluation Type Journal Article
Year 2015 Publication AI Communications Abbreviated Journal AIC
Volume 28 Issue 1 Pages 87-101
Keywords Social signal processing; human behavior analysis; multi-modal data description; multi-modal data fusion; non-verbal communication analysis; e-Learning
Abstract The oral communication competence is defined on the top of the most relevant skills for one's professional and personal life. Because of the importance of communication in our activities of daily living, it is crucial to study methods to evaluate and provide the necessary feedback that can be used in order to improve these communication capabilities and, therefore, learn how to express ourselves better. In this work, we propose a system capable of evaluating quantitatively the quality of oral presentations in an automatic fashion. The system is based on a multi-modal RGB, depth, and audio data description and a fusion approach in order to recognize behavioral cues and train classifiers able to eventually predict communication quality levels. The performance of the proposed system is tested on a novel dataset containing Bachelor thesis' real defenses, presentations from an 8th semester Bachelor courses, and Master courses' presentations at Universitat de Barcelona. Using as groundtruth the marks assigned by actual instructors, our system achieves high performance categorizing and ranking presentations by their quality, and also making real-valued mark predictions.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-7126 ISBN Medium
Area Expedition Conference
Notes HUPBA;MILAB Approved no
Call Number Admin @ si @ CCE2015 Serial 2549
Permanent link to this record