toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Frederic Sampedro; Anna Domenech; Sergio Escalera edit  url
doi  openurl
  Title Static and dynamic computational cancer spread quantification in whole body FDG-PET/CT scans Type Journal Article
  Year 2014 Publication Journal of Medical Imaging and Health Informatics Abbreviated Journal JMIHI  
  Volume 4 Issue 6 Pages 825-831  
  Keywords CANCER SPREAD; COMPUTER AIDED DIAGNOSIS; MEDICAL IMAGING; TUMOR QUANTIFICATION  
  Abstract In this work we address the computational cancer spread quantification scenario in whole body FDG-PET/CT scans. At the static level, this setting can be modeled as a clustering problem on the set of 3D connected components of the whole body PET tumoral segmentation mask carried out by nuclear medicine physicians. At the dynamic level, and ad-hoc algorithm is proposed in order to quantify the cancer spread time evolution which, when combined with other existing indicators, gives rise to the metabolic tumor volume-aggressiveness-spread time evolution chart, a novel tool that we claim that would prove useful in nuclear medicine and oncological clinical or research scenarios. Good performance results of the proposed methodologies both at the clinical and technological level are shown using a dataset of 48 segmented whole body FDG-PET/CT scans.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (down) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SDE2014b Serial 2548  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: