|   | 
Author Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados
Title Efficient segmentation-free keyword spotting in historical document collections Type Journal Article
Year (up) 2015 Publication Pattern Recognition Abbreviated Journal PR
Volume 48 Issue 2 Pages 545–555
Keywords Historical documents; Keyword spotting; Segmentation-free; Dense SIFT features; Latent semantic analysis; Product quantization
Abstract In this paper we present an efficient segmentation-free word spotting method, applied in the context of historical document collections, that follows the query-by-example paradigm. We use a patch-based framework where local patches are described by a bag-of-visual-words model powered by SIFT descriptors. By projecting the patch descriptors to a topic space with the latent semantic analysis technique and compressing the descriptors with the product quantization method, we are able to efficiently index the document information both in terms of memory and time. The proposed method is evaluated using four different collections of historical documents achieving good performances on both handwritten and typewritten scenarios. The yielded performances outperform the recent state-of-the-art keyword spotting approaches.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
Area Expedition Conference
Notes DAG; ADAS; 600.076; 600.077; 600.061; 601.223; 602.006; 600.055 Approved no
Call Number Admin @ si @ RAT2015a Serial 2544
Permanent link to this record