|   | 
Author (up) Jose Manuel Alvarez; Antonio Lopez; Theo Gevers; Felipe Lumbreras
Title Combining Priors, Appearance and Context for Road Detection Type Journal Article
Year 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 15 Issue 3 Pages 1168-1178
Keywords Illuminant invariance; lane markings; road detection; road prior; road scene understanding; vanishing point; 3-D scene layout
Abstract Detecting the free road surface ahead of a moving vehicle is an important research topic in different areas of computer vision, such as autonomous driving or car collision warning.
Current vision-based road detection methods are usually based solely on low-level features. Furthermore, they generally assume structured roads, road homogeneity, and uniform lighting conditions, constraining their applicability in real-world scenarios. In this paper, road priors and contextual information are introduced for road detection. First, we propose an algorithm to estimate road priors online using geographical information, providing relevant initial information about the road location. Then, contextual cues, including horizon lines, vanishing points, lane markings, 3-D scene layout, and road geometry, are used in addition to low-level cues derived from the appearance of roads. Finally, a generative model is used to combine these cues and priors, leading to a road detection method that is, to a large degree, robust to varying imaging conditions, road types, and scenarios.
Corporate Author Thesis
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.076;ISE Approved no
Call Number Admin @ si @ ALG2014 Serial 2501
Permanent link to this record