|   | 
Details
   web
Record
Author Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny
Title Segmentation-free Word Spotting with Exemplar SVMs Type Journal Article
Year 2014 Publication Pattern Recognition Abbreviated Journal PR
Volume 47 Issue 12 Pages (up) 3967–3978
Keywords Word spotting; Segmentation-free; Unsupervised learning; Reranking; Query expansion; Compression
Abstract In this paper we propose an unsupervised segmentation-free method for word spotting in document images. Documents are represented with a grid of HOG descriptors, and a sliding-window approach is used to locate the document regions that are most similar to the query. We use the Exemplar SVM framework to produce a better representation of the query in an unsupervised way. Then, we use a more discriminative representation based on Fisher Vector to rerank the best regions retrieved, and the most promising ones are used to expand the Exemplar SVM training set and improve the query representation. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.045; 600.056; 600.061; 602.006; 600.077 Approved no
Call Number Admin @ si @ AGF2014b Serial 2485
Permanent link to this record