|   | 
Author Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny
Title Word Spotting and Recognition with Embedded Attributes Type Journal Article
Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 36 Issue 12 Pages 2552 - 2566
Abstract This article addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks.
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition (up)
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes DAG; 600.056; 600.045; 600.061; 602.006; 600.077 Approved no
Call Number Admin @ si @ AGF2014a Serial 2483
Permanent link to this record