toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (down) Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa edit   pdf
doi  isbn
openurl 
  Title Learning a Part-based Pedestrian Detector in Virtual World Type Journal Article
  Year 2014 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 15 Issue 5 Pages 2121-2131  
  Keywords Domain Adaptation; Pedestrian Detection; Virtual Worlds  
  Abstract Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-0587 ISBN 978-1-4673-2754-1 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number ADAS @ adas @ XVL2014 Serial 2433  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: