toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados edit  doi
isbn  openurl
  Title Improving Fuzzy Multilevel Graph Embedding through Feature Selection Technique Type Conference Article
  Year 2012 Publication Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop Abbreviated Journal  
  Volume 7626 Issue Pages 243-253  
  Abstract Graphs are the most powerful, expressive and convenient data structures but there is a lack of efficient computational tools and algorithms for processing them. The embedding of graphs into numeric vector spaces permits them to access the state-of-the-art computational efficient statistical models and tools. In this paper we take forward our work on explicit graph embedding and present an improvement to our earlier proposed method, named “fuzzy multilevel graph embedding – FMGE”, through feature selection technique. FMGE achieves the embedding of attributed graphs into low dimensional vector spaces by performing a multilevel analysis of graphs and extracting a set of global, structural and elementary level features. Feature selection permits FMGE to select the subset of most discriminating features and to discard the confusing ones for underlying graph dataset. Experimental results for graph classification experimentation on IAM letter, GREC and fingerprint graph databases, show improvement in the performance of FMGE.  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-34165-6 Medium  
  Area Expedition Conference SSPR&SPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ LRL2012 Serial 2381  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: