toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny edit   pdf
doi  openurl
  Title Handwritten Word Spotting with Corrected Attributes Type Conference Article
  Year 2013 Publication 15th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 1017-1024  
  Abstract We propose an approach to multi-writer word spotting, where the goal is to find a query word in a dataset comprised of document images. We propose an attributes-based approach that leads to a low-dimensional, fixed-length representation of the word images that is fast to compute and, especially, fast to compare. This approach naturally leads to an unified representation of word images and strings, which seamlessly allows one to indistinctly perform query-by-example, where the query is an image, and query-by-string, where the query is a string. We also propose a calibration scheme to correct the attributes scores based on Canonical Correlation Analysis that greatly improves the results on a challenging dataset. We test our approach on two public datasets showing state-of-the-art results.  
  Address Sydney; Australia; December 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-5499 ISBN Medium  
  Area Expedition Conference ICCV  
  Notes DAG Approved no  
  Call Number Admin @ si @ AGF2013 Serial 2327  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: