|   | 
Details
   web
Record
Author Jose Manuel Alvarez; Theo Gevers; Ferran Diego; Antonio Lopez
Title Road Geometry Classification by Adaptative Shape Models Type Journal Article
Year 2013 Publication (down) IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 14 Issue 1 Pages 459-468
Keywords road detection
Abstract Vision-based road detection is important for different applications in transportation, such as autonomous driving, vehicle collision warning, and pedestrian crossing detection. Common approaches to road detection are based on low-level road appearance (e.g., color or texture) and neglect of the scene geometry and context. Hence, using only low-level features makes these algorithms highly depend on structured roads, road homogeneity, and lighting conditions. Therefore, the aim of this paper is to classify road geometries for road detection through the analysis of scene composition and temporal coherence. Road geometry classification is proposed by building corresponding models from training images containing prototypical road geometries. We propose adaptive shape models where spatial pyramids are steered by the inherent spatial structure of road images. To reduce the influence of lighting variations, invariant features are used. Large-scale experiments show that the proposed road geometry classifier yields a high recognition rate of 73.57% ± 13.1, clearly outperforming other state-of-the-art methods. Including road shape information improves road detection results over existing appearance-based methods. Finally, it is shown that invariant features and temporal information provide robustness against disturbing imaging conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ADAS;ISE Approved no
Call Number Admin @ si @ AGD2013;; ADAS @ adas @ Serial 2269
Permanent link to this record