|   | 
Details
   web
Record
Author (up) David Vazquez; Jiaolong Xu; Sebastian Ramos; Antonio Lopez; Daniel Ponsa
Title Weakly Supervised Automatic Annotation of Pedestrian Bounding Boxes Type Conference Article
Year 2013 Publication CVPR Workshop on Ground Truth – What is a good dataset? Abbreviated Journal
Volume Issue Pages 706 - 711
Keywords Pedestrian Detection; Domain Adaptation
Abstract Among the components of a pedestrian detector, its trained pedestrian classifier is crucial for achieving the desired performance. The initial task of the training process consists in collecting samples of pedestrians and background, which involves tiresome manual annotation of pedestrian bounding boxes (BBs). Thus, recent works have assessed the use of automatically collected samples from photo-realistic virtual worlds. However, learning from virtual-world samples and testing in real-world images may suffer the dataset shift problem. Accordingly, in this paper we assess an strategy to collect samples from the real world and retrain with them, thus avoiding the dataset shift, but in such a way that no BBs of real-world pedestrians have to be provided. In particular, we train a pedestrian classifier based on virtual-world samples (no human annotation required). Then, using such a classifier we collect pedestrian samples from real-world images by detection. After, a human oracle rejects the false detections efficiently (weak annotation). Finally, a new classifier is trained with the accepted detections. We show that this classifier is competitive with respect to the counterpart trained with samples collected by manually annotating hundreds of pedestrian BBs.
Address Portland; Oregon; June 2013
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes ADAS; 600.054; 600.057; 601.217 Approved no
Call Number ADAS @ adas @ VXR2013a Serial 2219
Permanent link to this record