|   | 
Details
   web
Record
Author (up) Jiaolong Xu; David Vazquez; Antonio Lopez; Javier Marin; Daniel Ponsa
Title Learning a Multiview Part-based Model in Virtual World for Pedestrian Detection Type Conference Article
Year 2013 Publication IEEE Intelligent Vehicles Symposium Abbreviated Journal
Volume Issue Pages 467 - 472
Keywords Pedestrian Detection; Virtual World; Part based
Abstract State-of-the-art deformable part-based models based on latent SVM have shown excellent results on human detection. In this paper, we propose to train a multiview deformable part-based model with automatically generated part examples from virtual-world data. The method is efficient as: (i) the part detectors are trained with precisely extracted virtual examples, thus no latent learning is needed, (ii) the multiview pedestrian detector enhances the performance of the pedestrian root model, (iii) a top-down approach is used for part detection which reduces the searching space. We evaluate our model on Daimler and Karlsruhe Pedestrian Benchmarks with publicly available Caltech pedestrian detection evaluation framework and the result outperforms the state-of-the-art latent SVM V4.0, on both average miss rate and speed (our detector is ten times faster).
Address Gold Coast; Australia; June 2013
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1931-0587 ISBN 978-1-4673-2754-1 Medium
Area Expedition Conference IV
Notes ADAS; 600.054; 600.057 Approved no
Call Number XVL2013; ADAS @ adas @ xvl2013a Serial 2214
Permanent link to this record