toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Volkmar Frinken; Alicia Fornes; Josep Llados; Jean-Marc Ogier edit   pdf
doi  isbn
  Title Bidirectional Language Model for Handwriting Recognition Type Conference Article
  Year 2012 Publication Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop Abbreviated Journal  
  Volume 7626 Issue Pages 611-619  
  Abstract In order to improve the results of automatically recognized handwritten text, information about the language is commonly included in the recognition process. A common approach is to represent a text line as a sequence. It is processed in one direction and the language information via n-grams is directly included in the decoding. This approach, however, only uses context on one side to estimate a word’s probability. Therefore, we propose a bidirectional recognition in this paper, using distinct forward and a backward language models. By combining decoding hypotheses from both directions, we achieve a significant increase in recognition accuracy for the off-line writer independent handwriting recognition task. Both language models are of the same type and can be estimated on the same corpus. Hence, the increase in recognition accuracy comes without any additional need for training data or language modeling complexity.  
  Address Japan  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-34165-6 Medium  
  Area Expedition Conference SSPR&SPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FFL2012 Serial 2057  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: