toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Volkmar Frinken; Francisco Zamora; Salvador España; Maria Jose Castro; Andreas Fischer; Horst Bunke edit   pdf
isbn  openurl
  Title Long-Short Term Memory Neural Networks Language Modeling for Handwriting Recognition Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 701-704  
  Abstract Unconstrained handwritten text recognition systems maximize the combination of two separate probability scores. The first one is the observation probability that indicates how well the returned word sequence matches the input image. The second score is the probability that reflects how likely a word sequence is according to a language model. Current state-of-the-art recognition systems use statistical language models in form of bigram word probabilities. This paper proposes to model the target language by means of a recurrent neural network with long-short term memory cells. Because the network is recurrent, the considered context is not limited to a fixed size especially as the memory cells are designed to deal with long-term dependencies. In a set of experiments conducted on the IAM off-line database we show the superiority of the proposed language model over statistical n-gram models.  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FZE2012 Serial 2052  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: