toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Volkmar Frinken; Andreas Fischer; Horst Bunke; Alicia Fornes edit  doi
  Title Co-training for Handwritten Word Recognition Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 314-318  
  Abstract To cope with the tremendous variations of writing styles encountered between different individuals, unconstrained automatic handwriting recognition systems need to be trained on large sets of labeled data. Traditionally, the training data has to be labeled manually, which is a laborious and costly process. Semi-supervised learning techniques offer methods to utilize unlabeled data, which can be obtained cheaply in large amounts in order, to reduce the need for labeled data. In this paper, we propose the use of Co-Training for improving the recognition accuracy of two weakly trained handwriting recognition systems. The first one is based on Recurrent Neural Networks while the second one is based on Hidden Markov Models. On the IAM off-line handwriting database we demonstrate a significant increase of the recognition accuracy can be achieved with Co-Training for single word recognition.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FFB2011 Serial 1789  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: