toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
  Record Links
Author (up) Jaume Gibert; Ernest Valveny; Horst Bunke edit  doi
isbn  openurl
  Title Dimensionality Reduction for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 8th IAPR-TC-15 International Workshop. Graph-Based Representations in Pattern Recognition Abbreviated Journal  
  Volume 6658 Issue Pages 22-31  
  Abstract The Graph of Words Embedding consists in mapping every graph of a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent component analysis (ICA), are applied to the embedded graphs. We discuss their performance compared to the classification of the original vectors on three different public databases of graphs.  
  Address Münster, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Xiaoyi Jiang; Miquel Ferrer; Andrea Torsello  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-20843-0 Medium  
  Area Expedition Conference GbRPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2011a Serial 1743  
Permanent link to this record
Select All    Deselect All
 |   | 

Save Citations:
Export Records: