|   | 
Details
   web
Record
Author (up) Xavier Boix; Josep M. Gonfaus; Joost van de Weijer; Andrew Bagdanov; Joan Serrat; Jordi Gonzalez
Title Harmony Potentials: Fusing Global and Local Scale for Semantic Image Segmentation Type Journal Article
Year 2012 Publication International Journal of Computer Vision Abbreviated Journal IJCV
Volume 96 Issue 1 Pages 83-102
Keywords
Abstract The Hierarchical Conditional Random Field(HCRF) model have been successfully applied to a number of image labeling problems, including image segmentation. However, existing HCRF models of image segmentation do not allow multiple classes to be assigned to a single region, which limits their ability to incorporate contextual information across multiple scales.
At higher scales in the image, this representation yields an oversimpli ed model since multiple classes can be reasonably expected to appear within large regions. This simpli ed model particularly limits the impact of information at higher scales. Since class-label information at these scales is usually more reliable than at lower, noisier scales, neglecting this information is undesirable. To
address these issues, we propose a new consistency potential for image labeling problems, which we call the harmony potential. It can encode any possible combi-
nation of labels, penalizing only unlikely combinations of classes. We also propose an e ective sampling strategy over this expanded label set that renders tractable the underlying optimization problem. Our approach obtains state-of-the-art results on two challenging, standard benchmark datasets for semantic image segmentation: PASCAL VOC 2010, and MSRC-21.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5691 ISBN Medium
Area Expedition Conference
Notes CAT;ISE;CIC;ADAS Approved no
Call Number Admin @ si @ BGW2012 Serial 1718
Permanent link to this record